
Project Hollow Point
Team Number: May1741

Advisor: Prof. Moni Mina

Team: Travis Evers



What is Project Hollow Point

Project Hollow Point is an adaptor to give Unity 3D access to all of the Bullet 

Physics Library. Giving Unity 3D the same physics calculation power of the best 

open source physics engine available.



Overview

 What is Unity 3D and Bullet Physics

 What problem is this project trying to solve

 The deliverables of this project

 Challenges

 What is done and what is left to do



Unity 3D

 Unity 3D is a cross platform game development engine

 Currently supports 21 different platforms

 Uses C# and Javascript

 Use a modified version of NVidia’s PhsX physics engine

 Designed for portability

 Lighter weight

 Uses multi threaded commands to CPU instead of the GPU



Bullet Physics

 Bullet Physics is an open source Physics engine

 Written C++

 Supports rigid body physics, soft body physics, inverse kinematics, and 

collision detection

 Used by major developers in the gaming industry such as Rockstar Games

 Used by the scientific community for research 



Why This Project Matters

 More scientific research and development is being done in Unity 3D

 With the increasing demand for VR more realistic Physics are necessary to 

maintain immersion

 There are no available plugins for Unity 3D that successfully integrate a 

better physics engine into Unity 3D without timing conflicts



Functional Requirements 

 Integration of Bullet Physics Operations

 Rigid body

 Soft Body

 Inverse Kinematic

 Integrated Unity editor Interface

 Ability to create 3D primitives and load 3D models

 Handle collision detection on the GPU



Non Functional Requirements

 Maintain Unity 3D’s portability

 Increase Unity 3D’s ability to process physics based objects by a minimum of 

50%

 Have a user interface that feels familiar to Unity 3D developers

 No timing conflicts between Unity 3D and Bullet Physics



Physics Types

 Rigid Body Physics integration

 Transform movement

 Transform Rotations

 Collision Detection

 Soft Body Physics integration

 Fluid simulation

 Cloth simulation

 Voxel based deformable objects

 Inverse Kinematic integration

 Joint constraint movement



User Interface

 Customized Unity editor extensions to make it easier to create and modify 

objects

 Editor menus

 Adding a Bullet Physics drop down menu for object creation

 In scene Editing widgets

 The ability to create and load in 3D models into the scene with optimized 

mesh structures, UV maps, and normal mappings

 Visualization of colliders in scene



Collision Detection Overview

 Multiple Broad phase Collection methods

 Dynamic Axis Aligned Bounding Box

 Axis Sweeping 

 Simple

 Only one type of Narrow Phase collision detection



Handling Portability

 Using the Bullet Sharp DLLs

 Using a modified version of 

Bullet Sharp’s wrapper

 Active DLL selectable within 

Build settings

Bullet Sharp 

Wrapper

Project Hollow 

Point

Unity 3D Systems

Android DLL IOS DLL OSX DLL X86 DLL



Challenges

 Scale and scope of this project is huge

 Keeping two update cycles from going out of synch

 Automated testing is nearly impossible to do since the majority of concerns 

are timing related



Issues with Timing

 Unity 3D’s update cycle 

is automatic

 Order in which game 

objects update is 

unpredictable

 Physics updates may not 

be complete by the end 

of a frame

 State conflicts

 Erratic motion

 Ignored user input 

Unity 3D Systems Bullet Systems

Update

Fixed Update

Partial Step

Fixed Step

Delta Time >= 

Fixed Time

Step Count >= 

Max Steps

True True

False False



Timing Solution For Partial Step

Update Manager
Bullet Sharp 

Wrapper

Update Manager 

Helper

Registered Bullet 

Physics Objects

1

3

2

4

5

6

1. Unity Update Invoked

2. Execute Partial step calculations

3. Return When completed

4. Invoke Message Broadcast on 

completion

5. Message received by registered 

listeners invoking an after partial step 

function

6. return



Timing Solution For Fixed Step

Perform Bullet 

Fixed Step 

Update

Broadcast Before 

Fixed Step 

Message

Broadcast After 

Fixed Step 

Message

Unity Fixed Update Invoked

After Fixed Step Updates Are 

completed

After Fixed Step Bullet is

completed

Finished with Fixed Update

 Fixed Step updates use 

yield breaks

 Frame rate is locked and 

can’t be dynamic

 Does not interfere with 

existing Unity systems

 Controls timing reliably 



What is Done

 Mesh generation for primitive objects and 3D model optimization

 Vertex mapping, normal mapping, UV mapping, and triangle mapping

 Collision object creation and management

 Support for sweeping, AABB, and simple static area broad phase collision

 Collison groups and filters

 Message board system for update management

 Optimized Bullet Sharp wrapper



What is Left

 Finish update manager

 Soft body physics support

 Fluid systems

 Voxel based mutable meshes

 Inverse Kinematic Constraints

 Character controllers

 User interface



Questions


