
Project Hollow Point
Team Number: May1741

Advisor: Prof. Moni Mina

Team: Travis Evers



What is Project Hollow Point

Project Hollow Point is an adaptor to give Unity 3D access to all of the Bullet 

Physics Library. Giving Unity 3D the same physics calculation power of the best 

open source physics engine available.



Overview

 What is Unity 3D and Bullet Physics

 What problem is this project trying to solve

 The deliverables of this project

 Challenges

 What is done and what is left to do



Unity 3D

 Unity 3D is a cross platform game development engine

 Currently supports 21 different platforms

 Uses C# and Javascript

 Use a modified version of NVidia’s PhsX physics engine

 Designed for portability

 Lighter weight

 Uses multi threaded commands to CPU instead of the GPU



Bullet Physics

 Bullet Physics is an open source Physics engine

 Written C++

 Supports rigid body physics, soft body physics, inverse kinematics, and 

collision detection

 Used by major developers in the gaming industry such as Rockstar Games

 Used by the scientific community for research 



Why This Project Matters

 More scientific research and development is being done in Unity 3D

 With the increasing demand for VR more realistic Physics are necessary to 

maintain immersion

 There are no available plugins for Unity 3D that successfully integrate a 

better physics engine into Unity 3D without timing conflicts



Functional Requirements 

 Integration of Bullet Physics Operations

 Rigid body

 Soft Body

 Inverse Kinematic

 Integrated Unity editor Interface

 Ability to create 3D primitives and load 3D models

 Handle collision detection on the GPU



Non Functional Requirements

 Maintain Unity 3D’s portability

 Increase Unity 3D’s ability to process physics based objects by a minimum of 

50%

 Have a user interface that feels familiar to Unity 3D developers

 No timing conflicts between Unity 3D and Bullet Physics



Physics Types

 Rigid Body Physics integration

 Transform movement

 Transform Rotations

 Collision Detection

 Soft Body Physics integration

 Fluid simulation

 Cloth simulation

 Voxel based deformable objects

 Inverse Kinematic integration

 Joint constraint movement



User Interface

 Customized Unity editor extensions to make it easier to create and modify 

objects

 Editor menus

 Adding a Bullet Physics drop down menu for object creation

 In scene Editing widgets

 The ability to create and load in 3D models into the scene with optimized 

mesh structures, UV maps, and normal mappings

 Visualization of colliders in scene



Collision Detection Overview

 Multiple Broad phase Collection methods

 Dynamic Axis Aligned Bounding Box

 Axis Sweeping 

 Simple

 Only one type of Narrow Phase collision detection



Handling Portability

 Using the Bullet Sharp DLLs

 Using a modified version of 

Bullet Sharp’s wrapper

 Active DLL selectable within 

Build settings

Bullet Sharp 

Wrapper

Project Hollow 

Point

Unity 3D Systems

Android DLL IOS DLL OSX DLL X86 DLL



Challenges

 Scale and scope of this project is huge

 Keeping two update cycles from going out of synch

 Automated testing is nearly impossible to do since the majority of concerns 

are timing related



Issues with Timing

 Unity 3D’s update cycle 

is automatic

 Order in which game 

objects update is 

unpredictable

 Physics updates may not 

be complete by the end 

of a frame

 State conflicts

 Erratic motion

 Ignored user input 

Unity 3D Systems Bullet Systems

Update

Fixed Update

Partial Step

Fixed Step

Delta Time >= 

Fixed Time

Step Count >= 

Max Steps

True True

False False



Timing Solution For Partial Step

Update Manager
Bullet Sharp 

Wrapper

Update Manager 

Helper

Registered Bullet 

Physics Objects

1

3

2

4

5

6

1. Unity Update Invoked

2. Execute Partial step calculations

3. Return When completed

4. Invoke Message Broadcast on 

completion

5. Message received by registered 

listeners invoking an after partial step 

function

6. return



Timing Solution For Fixed Step

Perform Bullet 

Fixed Step 

Update

Broadcast Before 

Fixed Step 

Message

Broadcast After 

Fixed Step 

Message

Unity Fixed Update Invoked

After Fixed Step Updates Are 

completed

After Fixed Step Bullet is

completed

Finished with Fixed Update

 Fixed Step updates use 

yield breaks

 Frame rate is locked and 

can’t be dynamic

 Does not interfere with 

existing Unity systems

 Controls timing reliably 



What is Done

 Mesh generation for primitive objects and 3D model optimization

 Vertex mapping, normal mapping, UV mapping, and triangle mapping

 Collision object creation and management

 Support for sweeping, AABB, and simple static area broad phase collision

 Collison groups and filters

 Message board system for update management

 Optimized Bullet Sharp wrapper



What is Left

 Finish update manager

 Soft body physics support

 Fluid systems

 Voxel based mutable meshes

 Inverse Kinematic Constraints

 Character controllers

 User interface



Questions


